Title image

Czech scientists have contributed to the development of a new class of organic conductors

A joint work by Czech, Spanish and Swiss scientists published by Nature Nanotechnology this week, introduces a new approach to the development of non-metallic conductors which could be used in solar energy, optical technologies or nanoelectronics.

An international team of scientists including researchers from the Regional Centre of Advanced Technologies and Materials (RCPTM) of the Faculty of Natural Sciences of the Palacky University, Olomouc, and from the Institute of Physics (FZU), Prague, has proposed and experimentally verified the possibility of preparing single-dimensional carbon-based conductive polymers. As carbon is one of the most accessible elements, the new polymer conductors have shown potentially lower production costs than normal metallic conductors, along with greater stability and the opportunity to control the properties of the material. The joint work of Czech, Spanish and Swiss scientists, published this week in the journal Nature Nanotechnology this week, introduces a new approach to designing non-metallic conductors, which could be used in solar energy applications, optical technologies or nanoelectronics. The significance of this work is evidenced by the fact that the article was given a special commentary by the editors of Nature Nanotechnology.

The structure of the conductive 1D polymer observed using atomic force microscopy (above). An image from a scanning tunnelling microscope showing the so-called free radicals at the end of a polymer (below). (Image by B. de la Torre)

"The advantage of the new polymers is the possibility of controlling their electronic and optical properties along with expected higher stability compared to current conductive polymers. The possibility of constructing stable carbon conductive polymers paves the way for miniaturizing and enhancing the performance of a number of electronic components," says Pavel Jelínek, who leads the Czech team.

More information about the article can be found here.

The full article can be found here.