Low Temperature Vibrating Sample Magnetometr Cryogenic Limited
This cryogen-free magnet system (CRYOGENIC), suitable for measuring both electrical and magnetic properties of samples, allows the experimenter to achieve low temperatures 1.6K up to 400K while applying magnetic fields up to 9T to their samples. The Cryogen-Free High Field Measurement System combines the latest cryogen-free technology with sophisticated measurement techniques providing a versatile, powerful investigative device achieving low temperatures and high magnetic fields without the use of liquid helium or nitrogen. The cryocooler provides the cooling to both the magnet and the variable temperature insert (VTI). Available for these field and temperature ranges are the following measurement options: · DCR (direct current resistivity) · VSM (vibrating sample magnetometry) · ACS (alternative current susceptibility)
Publications
Horký, M., 2025: Controlling the magnetic phase transition in spatially confined structures. PH.D. THESIS, p. 1 - 181 (RAITH, MIRA-EBL, LYRA, SUSS-MA8, DEKTAK, NANOCALC, MAGNETRON, EVAPORATOR, RIE-FLUORINE, WIRE-BONDER, MPS150, CRYOGENIC, LAKESHORE, VERSALAB, ICON-SPM, TITAN, HELIOS, VERIOS, RIGAKU3, RIGAKU9)
Martyniuk, O.; Chaudhary, V.; Rhanbouri, MA.; Laguta, O.; Tahsin, M.; Gaskill, DK.; El Fatimy,A .; Neugebauer, P., 2025: Quantum dots array: an approach to multipixel devices. JOURNAL OF PHYSICS D - APPLIED PHYSICS 58 (13), doi: 10.1088/1361-6463/adacf8 (KRATOS-XPS, EVAPORATOR, RAITH, CRYOGENIC)
Klimek, J., 2023: Pulsed laser deposition of thin films of ferromagnetic oxides and investigation of their magnetic properties. BACHELOR'S THESIS, p. 1 - 32 (ICON-SPM, KRATOS-XPS, VERSALAB, CRYOGENIC)
POLAT, Ö.; HORÁK, M.; ARREGI URIBEETXEBARRIA, J.; BUKVIŠOVÁ, K.; ZLÁMAL, J.; ŠIKOLA, T., 2023: Synthesis and characterization of half-Heusler ScPtBi films via three-source magnetron co-sputtering on Nb superconductor buffer layer. SURFACES AND INTERFACES 40, doi: 10.1016/j.surfin.2023.103118 (MAGNETRON, RIGAKU9, TITAN, HELIOS, KRATOS-XPS, CRYOGENIC, LYRA)
NEMEC, I.; KOTÁSKOVÁ, L.; HERCHEL, R., 2023: Variation of Spin-Transition Temperature in the Iron(III) Complex Induced by Different Compositions of the Crystallization Solvent. CRYSTAL GROWTH AND DESIGN 23 (3), p. 1323 - 7, doi: 10.1021/acs.cgd.2c01411 (CRYOGENIC)
Ramazanov, S.; Sobola, D.; Gajiev, G.; Orudzhev, F.; Kaspar, P.; Gummetov, A., 2023: Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition. NANOMATERIALS 13 (1), doi: 10.3390/nano13010139 (WITEC-RAMAN, KRATOS-XPS, CRYOGENIC)
Havlíček, L., 2022: Single-Molecule Magnets with Trigonal Symmetry of the Coordination Polyhedron: Structure, Magnetic Properties and Deposition on Surfaces. PH.D. THESIS, p. 1 - 101 (CRYOGENIC, KRATOS-XPS, WITEC-RAMAN)
POLAT, Ö.; ARREGI URIBEETXEBARRIA, J.; HORÁK, M.; POLČÁK, J.; BUKVIŠOVÁ, K.; ZLÁMAL, J.; ŠIKOLA, T., 2022: The fabrication and characterization of half-Heusler YPdBi thin films. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 161, p. 1 - 6, doi: 10.1016/j.jpcs.2021.110447 (MAGNETRON, RIGAKU9, LYRA, TITAN, HELIOS, KRATOS-XPS, CRYOGENIC)
POLAT, Ö.; MOHELSKÝ, I.; ARREGI URIBEETXEBARRIA, J.; HORÁK, M.; POLČÁK, J.; BUKVIŠOVÁ, K.; ZLÁMAL, J.; ŠIKOLA, T., 2022: An investigation of structural and magnetotransport features of half-Heusler ScPtBi thin films. MATERIALS RESEARCH BULLETIN 149, p. 111696-1 - 7, doi: 10.1016/j.materresbull.2021.111696 (MAGNETRON, RIGAKU9, LYRA, TITAN, HELIOS, KRATOS-XPS, CRYOGENIC)
HAVLÍČEK, L.; HERCHEL, R.; NEMEC, I.; NEUGEBAUER, P., 2022: Weak antiferromagnetic interaction in Cu(II) complex with semi-coordination exchange pathway. POLYHEDRON 223, doi: 10.1016/j.poly.2022.115962 (CRYOGENIC)
ANTAL, P.; NEMEC, I.; PECHOUŠEK, J.; HERCHEL, R., 2022: New Ferrocene-Based Metalloligand with Two Triazole Carboxamide Pendant Arms and Its Iron(II) Complex: Synthesis, Crystal Structure, Fe-57 Mossbauer Spectroscopy, Magnetic Properties and Theoretical Calculations. INORGANICS 10 (11), doi: 10.3390/inorganics10110199 (CRYOGENIC)
PENG, X.; URSO, M.; PUMERA, M., 2021: Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. SMALL METHODS 5 (10), p. 2100617-1 - 9, doi: 10.1002/smtd.202100617 (MIRA-STAN, CRYOGENIC)
Ramazanov, S.; Sobola, D.; Ţălu, Ş.; Orudzev, F.; Arman, A.; Kaspar, P.; Dallaev, R.; Ramazanov, G., 2021: Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. MICROSCOPY RESEARCH AND TECHNIQUE, p. 1 - 11, doi: 10.1002/jemt.23996 (LYRA, SIMS, KRATOS-XPS, CRYOGENIC, VERIOS)
RAMAZANOV, S.; SOBOLA, D.; ORUDZHEV, F.; KNÁPEK, A.; POLČÁK, J.; POTOČEK, M.; KASPAR, P.; DALLAEV, R., 2020: Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG. NANOMATERIALS 10 (10), p. 1990-1 - 17, doi: 10.3390/nano10101990 (HELIOS, SIMS, KRATOS-XPS, CRYOGENIC)
Mohelský, I., 2020: Infrared magneto–spectroscopy of Bi2Te3 topological insulator. MASTER'S THESIS, p. 1 - 49 (FTIR, WOOLLAM-MIR, MAGNETRON, CRYOGENIC, KRATOS-XPS)
ZBONČÁK, M.; ONDREÁŠ, F.; UHLÍŘ, V.; LEPCIO, P.; MICHALIČKA, J.; JANČÁŘ, J., 2020: Translation of segment scale stiffening into macro scale reinforcement in polymer nanocomposites. POLYMER ENGINEERING AND SCIENCE 60 (3), p. 587 - 10, doi: 10.1002/pen.25317 (MIRA-STAN, CRYOGENIC)
Hajduček, J., 2019: Substrate-controlled nucleation of the magnetic phase transtition in nanostructures. BACHELOR'S THESIS, p. 1 - 46 (MAGNETRON, ICON-SPM, CRYOGENIC, MIRA-EBL, RIE-FLUORINE, EVAPORATOR, VERSALAB)
Jaskowiec, J., 2019: Spatial confinement effects in metamagnetic nanostructures. MASTER'S THESIS, p. 1 - 55 (MAGNETRON, MIRA-EBL, RAITH, ICON-SPM, CRYOGENIC, VERSALAB)
Rienks, EDL.; Wimmer, S.; Sanchez-Barriga, J.; Caha, O.; Mandal, PS.; Ruzicka, J.; Ney, A.; Steiner, H. ; Albu, M.; Kothleitner, G.; Michalicka, J. ; Khan, SA.; Minar, J.; Ebert, H.; Bauer, G. ; Freyse, F.; Varykhalov, A.; Rader, O. Springholz, G. , 2019: Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. NATURE 576 (7787), p. 423 - 19, doi: 10.1038/s41586-019-1826-7 (CRYOGENIC, TITAN, HELIOS, RIGAKU9)
Motyčková, L., 2018: Epitaxial growth and characterization of metamagnetic nanoparticles for biomedical applications. BACHELOR'S THESIS, p. 1 - 55 (MAGNETRON, ICON-SPM, LYRA, CRYOGENIC)
Friš, P.; Munzar, D.; Caha, O.; Dubroka, A., 2018: Direct observation of double exchange in ferromagnetic La0.7Sr0.3CoO3 by broadband ellipsometry. PHYSICAL REVIEW B 97 (4), p. 045137-1 - 045137-5, doi: 10.1103/PhysRevB.97.045137 (WOOLLAM-MIR, WOOLLAM-VIS, RIGAKU9, FTIR, CRYOGENIC)
Kukolova, A., 2017: Experimental study of electronic properties of manganites and electron stimulated desorption. MASTER'S THESIS, p. 1 - 91 (WOOLLAM-MIR, WOOLLAM-VIS, CRYOGENIC)
Holobrádek, J., 2017: Transport Properties of One Magnetic Nanostructures. BACHELOR'S THESIS, p. 1 - 48 (CRYOGENIC, TITAN, ICON-SPM, MIRA-EBL, EVAPORATOR, WIRE-BONDER)
Jaskowiec, J., 2017: Magnetic Force Microscopy and Transport Properties of Metamagnetic Nanostructures. BACHELOR'S THESIS, p. 1 - 47 (MAGNETRON, MIRA-EBL, RAITH, ICON-SPM, CRYOGENIC, LYRA)