Deep reactive ion etching of Si-based materials Oxford Instruments Plasma Technology PlasmaPro 100

Deep reactive-ion etching (DRIE) is a highly anisotropic etch process used to create deep penetration, steep-sided holes, and trenches in wafers/substrates, typically with high aspect ratios. It was developed for microelectromecha­nical systems (MEMS), which require these features, but is also used to excavate trenches for high-density capacitors for DRAM and more recently for creating through silicon via's (TSV)'s in advanced 3D wafer-level packaging technology. There are two main technologies for high-rate DRIE: cryogenic and Bosch, although the Bosch process is the only recognized production technique. Both Bosch and cryo processes can fabricate 90° (truly vertical) walls, but often the walls are slightly tapered, e.g. 88° („reentrant“) or 92° („retrograde“). Another mechanism is sidewall passivation: SiOxFy functional groups (which originate from sulfur hexafluoride and oxygen etch gases) condense on the sidewalls and protect them from lateral etching. As a combination of these processes deep vertical structures can be made.

Publications

Liu, X.; Fohlerová, Z.; Gablech, I.; Pumera, M.; Neužil, P., 2024: Nature-inspired parylene/SiO2 core-shell micro-nano pillars: Effect of topography and surface chemistry. APPLIED MATERIALS TODAY 37, doi: 10.1016/j.apmt.2024.102117 (RIE-FLUORINE, DRIE, PARYLENE-SCS, XEF2)

CHMELÍKOVÁ, L.; FECKO, P.; CHMELÍK, J.; SKÁCEL, J.; OTÁHAL, A.; FOHLEROVÁ, Z., 2023: Demolded hollow high aspect-ratio parylene-C micropillars for real-time mechanosensing applications. APPLIED MATERIALS TODAY, p. 1 - 12, doi: 10.1016/j.apmt.2023.101736 (DRIE, PARYLENE-SCS, SUSS-MA8, XEF2)

GABLECH, I.; BRODSKÝ, J.; VYROUBAL, P.; PIASTEK, J.; BARTOŠÍK, M.; PEKÁREK, J., 2022: Mechanical strain and electric-field modulation of graphene transistors integrated on MEMS cantilevers. JOURNAL OF MATERIALS SCIENCE 57 (3), p. 1923 - 13, doi: 10.1007/s10853-021-06846-6 (RIE-FLUORINE, DRIE, EVAPORATOR, WIRE-BONDER, MPS150, KEITHLEY-4200, SUSS-MA8, DWL)

Ondříšková, M., 2022: Analysis and characterisation of spirally–arranged field–emission nanostructure. BACHELOR'S THESIS, p. 1 - 56 (VERIOS, DRIE, KRATOS-XPS)

Brodský J., 2021: Gas sensors based on 1D and 2D materials. MASTER'S THESIS, p. 1 - 84 (DWL, DIENER, SUSS-RCD8, SUSS-MA8, EVAPORATOR, MPS150, ICON-SPM, RIE-FLUORINE, DRIE, LYRA)

GABLECH, I.; KLEMPA, J.; PEKÁREK, J.; VYROUBAL, P.; HRABINA, J.; HOLÁ, M.; KUNZ, J.; BRODSKÝ, J.; NEUŽIL, P., 2020: Simple and efficient AlN-based piezoelectric energy harvesters. MICROMACHINES 11 (2), p. 1 - 10, doi: 10.3390/mi11020143 (DRIE, RIE-CHLORINE, WIRE-BONDER, KAUFMAN)

LIU, X.; FECKO, P.; FOHLEROVÁ, Z.; PEKÁREK, J.; KARÁSEK, T.; NEUŽIL, P., 2020: Parylene Micropillars Coated with Thermally Grown SiO2. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 38 (6), p. 38 - 6, doi: 10.1116/6.0000558 (SUSS-MA8, SUSS-RCD8, DWL, DRIE, RIE-FLUORINE, PARYLENE-SCS, XEF2, APCVD, LYRA)

Brodský, J., 2019: Characterization of graphene elecrical properties on MEMS structures. BACHELOR'S THESIS, p. 1 - 50 (MPS150, EVAPORATOR, DRIE, PECVD, DWL, SUSS-MA8, RIE-FLUORINE, RIE-CHLORINE, DIENER, SCIA)

Fecko, P., 2019: Gecko mimicking surfaces. MASTER'S THESIS, p. 1 - 52 (SUSS-RCD8, SUSS-MA8, DWL, DRIE, LYRA, ALD, RIE-FLUORINE, ICON-SPM, PARYLENE-SCS, XEF2)

PRÁŠEK, J.; HOUŠKA, D.; HRDÝ, R.; HUBÁLEK, J.; SCHMID, U., 2019: Optimization of Cryogenic Deep Reactive Ion Etching Process for On-Chip Energy Storage. INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY ISSE, p. 1 - 6, doi: 10.1109/ISSE.2019.8810293 (DRIE, ICON-SPM, SUSS-MA8, SUSS-RCD8, EVAPORATOR, DWL)

GABLECH, I.; KLEMPA, J.; PEKÁREK, J.; VYROUBAL, P.; KUNZ, J.; NEUŽIL, P., 2019: Aluminum nitride based piezoelectric harvesters. 2019 19TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS) (001), p. 1 - 4, doi: 10.1109/PowerMEMS49317.2019.82063211368 (DIENER, DRIE, DWL, KAUFMAN, RIE-CHLORINE, SUSS-MA8)

GABLECH, I.; SOMER, J.; FOHLEROVÁ, Z.; SVATOŠ, V.; PEKÁREK, J.; KURDÍK, S.; FENG, J.; FECKO, P.; PODEŠVA, P.; HUBÁLEK, J.; NEUŽIL, P., 2018: Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating. MICROFLUIDICS AND NANOFLUIDICS 22 (9), p. NA - 7, doi: 10.1007/s10404-018-2125-6 (DRIE, DWL, SUSS-MA8, PARYLENE-SCS, XEF2)

Gallery

Details

Type of access
Full-service (paid), Self-service
Research area
Devices
Category
Dry etching
Subcategory
DRIE
Guarantor
Eliáš, Marek
Site
CEITECNANO
Location
CEITEC Nano - C1.34

Documents

List of Experienced Users in Etching & Deposition Lab C1.34
External Manuals & Docs